返回頂部
關閉軟件導航
位置:首頁 > 資訊 > 電商資訊>一文詳解被阿里騰訊視作核心機密的大數據平臺架構
一文詳解被阿里騰訊視作核心機密的大數據平臺架構

上一篇文章講的是美團的大數據平臺架構,相信大家也看到了這種平臺的優勢,也就是因為這種大數據平臺架構的存在,阿里才會提出數據中臺這么個非常好用的東西,后面有空會和大家再講講數據中臺。

好了,言歸正傳,假如我們能夠化整為零,在企業內部從宏觀、整體的角度設計和實現一個統一的大數據平臺,引入單一集群、單一存儲,統一服務和統一安全的架構思想,就能很好的幫助企業解決很多問題。

提到大數據分析平臺,不得不說Hadoop系統,Hadoop到現在也超過10年的歷史了,很多東西發生了變化,版本也從0.x進化到目前的2.6版本。我把2021年后定義成后Hadoop平臺時代,這不是說不用Hadoop,而是像NoSQL(NotOnlySQL)那樣,有其他的選型補充。

Hadoop:開源的數據分析平臺,解決了大數據(大到一臺計算機無法進行存儲,一臺計算機無法在要求的時間內進行處理)的可靠存儲和處理。適合處理非結構化數據,包括HDFS,MapReduce基本組件。

HDFS:提供了一種跨服務器的彈性數據存儲系統。

MapReduce:技術提供了感知數據位置的標準化處理流程:讀取數據,對數據進行映射(Map),使用某個鍵值對數據進行重排,然后對數據進行化簡(Reduce)得到很終的輸出。

AmazonElasticMapReduce(EMR):托管的解決方案,運行在由AmazonElasticComputeCloud(EC2)和SimpleStrorageService(S3)組成的網絡規模的基礎設施之上。假如你需要一次性的或不常見的大數據處理,EMR可能會為你節省開支。但EMR是高度優化成與S3中的數據一起工作,會有較高的延時。Hadoop還包含了一系列技術的擴展系統,這些技術主要包括了Sqoop、Flume、Hive、Pig、Mahout、Datafu和HUE等。

這里就不一一列舉了,有很多,有感愛好的可以和我私信討論。

大數據計算通過將可執行的代碼分發到大規模的服務器集群上進行分布式計算,以處理大規模的數據,即所謂的移動計算比移動數據更劃算。但是這樣的計算方式必然不會很快,即使一個規模不太大的數據集上的一次簡單計算,MapReduce也可能需要幾分鐘,Spark快一點,也至少需要數秒的時間。

而網站處理用戶請求,需要毫秒級的響應,也就是說,要在1秒內完成計算,大數據計算必然不能實現這樣的響應要求。但是網站應用又需要使用大數據實現統計分析、數據挖掘、關聯推薦、用戶畫像等一系列功能。

所以網站需要構建一個大數據平臺,去整合網站應用和大數據系統之間的差異,將應用程序產生的數據導入到大數據系統,經過處理計算后再導出給應用程序使用。一個典型的網站大數據平臺架構如下圖:

大數據平臺可分為三個部分:

1.數據采集

將應用程序產生的數據和日志等同步到大數據系統中,由于數據源不同,這里的數據同步系統實際上是多個相關系統的組合。數據庫同步通常用Sqoop,日志同步可以選擇Flume,打點采集的數據經過格式化轉換后通過Kafka傳遞。

不同的數據源產生的數據質量可能差別很大,數據庫中的數據也許可以直接導入大數據系統就可以,而日志和爬蟲產生的數據就需要進行大量的清洗、轉化處理才能有效使用。所以數據同步系統實際上承擔著傳統數據倉庫ETL的工作。

2.數據處理

這里是大數據存儲與計算的核心,數據同步系統導入的數據存儲在HDFS。MapReduce、Hive、Spark等計算任務讀取HDFS上的數據進行計算,再將計算結果寫入HDFS。

一文詳解被阿里騰訊視作核心機密的大數據平臺架構1

MapReduce、Hive、Spark等進行的計算處理被稱作是離線計算,HDFS存儲的數據被稱為離線數據。相對的,用戶實時請求需要計算的數據稱為在線數據,這些數據由用戶實時產生,進行實時在線計算,并把結果數據實時返回用戶,這個計算過程中涉及的數據主要是用戶自己一次請求產生和需要的數據,數據規模非常小,內存中一個線程上下文就可以處理。

在線數據完成和用戶的交互后,被數據同步系統導入到大數據系統,這些數據就是離線數據,其上進行的計算通常針對(某一方面的)全體數據,比如針對所有訂單進行商品的關聯性挖掘,這時候數據規模非常大,需要較長的運行時間,這類計算就是離線計算。

除了離線計算,還有一些場景,數據規模也比較大,要求的處理時間也比較短。比如淘寶要統計每秒產生的訂單數,以便進行監控和宣傳。這種場景被稱為大數據流式計算,通常用Storm、SparkSteaming等流式大數據引擎來完成,可以在秒級甚至毫秒級時間內完成計算。

3.數據輸出與展示

大數據計算產生的數據還是寫入到HDFS中,應用程序不可能到HDFS中讀取數據,所以必須要將HDFS中的數據導出到數據庫中。數據同步導出相對比較簡單,計算產生的數據都比較規范,稍作處理就可以用Sqoop之類的系統導出到數據庫。

這時,應用程序就可以直接訪問數據庫中的數據,實時展示給用戶,比如展示給用戶的關聯推薦的商品。淘寶賣家的量子魔方之類的產品,其數據都來自大數據計算產生。

除了給用戶訪問提供數據,大數據還需要給運營和決策層提供各種統計報告,這些數據也寫入數據庫,被相應的后臺系統訪問。很多運營和治理人員,天天一上班,就是登錄后臺數據系統,查看前一天的數據報表,看業務是否正常。假如數據正常甚至上升,就可以稍微輕松一點,假如數據下跌,焦躁而忙碌的一天也馬上就開始了。

將上面三個部分整合起來的是任務調度治理系統,不同的數據何時開始同步,各種MapReduce、Spark任務如何合理調度才能使資源利用很合理、等待的時間又不至于太久,臨時的重要任務能夠盡快執行,這些都需要任務調度治理系統完成。有時候對分析師和工程師開放的作業提交、進度跟蹤,數據查看等功能也集成在這個系統中。

對于每個公司的大數據團隊,很核心開發維護的也就是這個系統,大數據平臺上的其他系統一般都有成熟的開源軟件可以選擇,作業調度治理會涉及很多個性化的需求,通常需要團隊自己開發。

看到這里,你們對整個大數據平臺架構了解了嗎,假如還沒有,我特地選了幾個知名互聯網公司的例子給你們,圖片有點糊,諒解。

如果您覺得 一文詳解被阿里騰訊視作核心機密的大數據平臺架構 這篇文章對您有用,請分享給您的好友,謝謝
文章地址:http://m.meyanliao.com/article/online/12982.html
解放雙手無盡可能,有問題添加天線貓微信
主站蜘蛛池模板: 国产精品亚洲专区无码不卡| 无码h黄动漫在线播放网站| 久久久无码精品亚洲日韩按摩| 中文有码vs无码人妻| 日韩精品久久无码中文字幕| 国产免费av片在线无码免费看| 中文字幕精品无码亚洲字| 无码精品人妻一区二区三区人妻斩| 亚洲中文字幕久久精品无码VA| 日韩综合无码一区二区| 亚洲AV无码一区二区三区牲色 | 中文字幕丰满伦子无码| 无码AV中文一区二区三区| 国产成人无码精品久久二区三区| 亚洲Av无码精品色午夜 | 无码视频在线观看| 人妻无码一区二区三区四区| 亚洲日韩精品A∨片无码加勒比| 精品人体无码一区二区三区| 无码Aⅴ在线观看| 亚洲人成人伊人成综合网无码| 玖玖资源站无码专区| 亚洲AV无码国产精品色午友在线| 亚洲人成无码网站久久99热国产| 国产精品午夜无码AV天美传媒| 一本一道VS无码中文字幕| 人妻无码第一区二区三区 | 亚洲人成无码网WWW| 国产爆乳无码视频在线观看3| 成人毛片无码一区二区| 伊人久久精品无码麻豆一区| 亚洲日韩精品无码专区加勒比| 亚洲午夜无码毛片av久久京东热| 久久亚洲精品成人av无码网站| 未满十八18禁止免费无码网站| 无码人妻精品一区二区三区夜夜嗨 | 无码无套少妇毛多69XXX| 亚洲AV无码AV男人的天堂不卡| 好了av第四综合无码久久 | 国产V亚洲V天堂A无码| 亚洲av无码精品网站|